Sources de variation de la fertilité et des fréquences de mortalité embryonnaire chez la vache laitière

A. PINTO (1), P. BOUCA (1), A. CHEVALLIER (2), S. FRERET (1,3), B. GRIMARD (3), P. HUMBLOT (1)
(1) UNCEIA, Services Techniques, 13 rue Jouet, BP63, 94703 Maisons Alfort Cedex
(2) UBCO, La Futaaie, 72700 Alençon
(3) Unité de Biologie de la Reproduction-ENVA, 7 avenue du Général de Gaulle, 94704 Maisons Alfort Cedex

RESUME - Dans 44 troupeaux de la zone du Groupe OGER, les données concernant 2199 IA ont été recueillies sur 1395 vaches laitières. Pour chaque vache on a enregistré: la date et les conditions de vêlage, le rang de lactation, le pic de production (maximum des 3 premiers contrôles), le TP (minimum de ces 3 contrôles), l'index économique laitier (INEL), la note d'état corporel (3 classes), la date de la première IA et des retours. La progestérone (P) a été dosée dans le lait le jour de l'IA (J0) et à J21-J24. La PSPB a été dosée à J35 et une palpation transrectale a été réalisée par la suite. Ceci a permis de classifier les vaches comme gestantes (P <5ng/ml à J0 puis >5ng/ml à J21-24, PSPB détectable, non revenues en chaleurs et/ou confirmées gestantes par palpation), mortalité embryonnaire précoce ou non fécondation (MEP, P <5ng/ml à J21-24, retour ou palpation négative), mortalité embryonnaire tardive (MET, P <3.5 ng/ml à J0, P >5ng/ml à J21-24, PSPB ou palpation négative). L'analyse des effets individuels cités ci-dessus sur le taux de gestation à l'IA1 à été réalisée à l'aide de modèles log-lineaires. Lorsque des effets de certains facteurs ont été observés sur le taux de gestation en IA1, les effets sur la répartition des cas de MEP et MET ont été étudiés plus particulièrement. Les taux de gestation de MEP et de MET après IA1 ont été respectivement de 43.0 %, 31.6 % et 14.7 %. Les 10 % d'animaux restants correspondent à des femelles non gestantes pour lesquelles il n'a pas été possible de déterminer s'il s'agissait de cas de NF/MEP ou de MET ou bien de vaches chez lesquelles le taux de progestérone était élevé le jour de l'IA. Le taux de gestation a été influencé par l'intervalle vêlage IA1 (<70 J : 40.3%, 70 et 90 J : 42.7%, >90 J : 46.6%; p<0.05), le rang de lactation (rang 1 : 47.5%, rang 2 et 3 : 42.7%, rang 4 et + : 34.6%; p<0.01), le TP (>30 g/kg : 47.1%, ≤ 30 g/kg : 41.3%; p<0.001), le niveau de production (≥ 39 kg : 34.9%, < 39 kg : 45.5%; p=0.05) et l'INEL (INEL≤27 : 45%, INEL>27 : 38.9%; p=0.01). Ces différences sont en partie expliquées par une diminution de la MET avec l'augmentation de l'intervalle vêlage-IA1, une augmentation de la MEP et de la MET avec le rang de lactation, une diminution de la MEP avec le TP, une augmentation de la MET avec le niveau de production surtout chez les femelles grasses au moment de l'IA, une augmentation de la MEP avec l'INEL. Ce travail confirme les effets négatifs de la sélection sur l'augmentation du potentiel laitier sur les performances de reproduction en 1ère IA et précise l'effet de facteurs individuels. Il est possible de limiter ces effets défavorables en maîtrisant le TP et en raisonnant l'intervalle vêlage - 1ère IA.

Sources of variation of fertility and of embryonic mortality rates in the dairy cow

A. PINTO (1), P. BOUCA (1), A. CHEVALLIER (2), S. FRERET (1,3), B. GRIMARD (3), P. HUMBLOT (1)
(1) UNCEIA, Services Techniques, 13 rue Jouet, BP63, 94703 Maisons Alfort

SUMMARY - In 44 herds of the west center of France, data following 2199 artificial inseminations (AI) were recorded from 1395 dairy cows. Date of calving, conditions of parity, milk yield (maximum kg/day of the 3 first months of lactation), protein milk concentration (g/kg, minimum of the 3 first months of lactation), synthetic genetic milk value (INEL), body condition score (3 classes), date of first AI, date of following inseminations were recorded for each cow. Progesterone milk concentrations (P) were measured the day of AI (D0) and 21-24 days later. PSPB was checked on D35 and rectal palpation was realised further on. Cows were determined as pregnant (P <5ng/ml on D0 and >5ng/ml on D21-D24, PSPB detectable, absence of second service and/or pregnant at rectal palpation), early embryonic death or non fertilization (MEP, P <5ng/ml on D21-D24, second service or non pregnant at rectal palpation), late embryonic death (MET, P <3.5 ng/ml on D0, P >5ng/ml on D21-D24, non pregnant at PSPB or rectal palpation). The effects of individual parameters on fertility rate on first AI were analysed using log-linear multivariate models. When a significant effect was found on fertility rate, the effects on embryonic death rates were further investigated. Fertility rate, MEP and MET rates were respectively 43.0 %, 31.6 % et 14.7 %. In 10 % of the cows it was not possible to determine precisely the type of infertility (NF/MEP or MET). Fertility rate was related to calving to 1st AI interval (<70 J : 40.3%, 70 et 90 J : 42.7%, >90 J : 46.6%; p<0.05), parity (primiparous : 47.5%, lactation 2 and 3 : 42.7%, lactation 4 and + : 34.6%; p<0.01), protein milk concentration (>30 g/kg : 47.1%, ≤ 30 g/kg : 41.3%; p<0.001), milk yield (≤ 39 kg : 34.9%, < 39 kg : 45.5%; p=0.05) and synthetic genetic value (INEL≤27 : 45%, INEL>27 : 38.9%; p=0.01). These differences were associated with decrease in MET when the interval from calving to 1st AI increased, increase of MEP and MET with parity, decrease of MEP with increase of protein milk concentration, increase of MET with increase in milk yield (only in fat cows), increase of MEP with genetic synthetic value. This study confirms the negative effects of selection on milk yield on reproductive performances. Nutrition management aiming to limit the decrease of protein milk concentration and delaying first AI in high producing dairy cows may limit these negative effects.
INTRODUCTION
Une dégradation des taux de non retour (TNR) après insémination artificielle (IA) ainsi qu’un allongement de l’intervalle entre vêlages ont été rapportés au cours des dernières années à partir de différentes enquêtes (Hery, 1995; Loisy, 1994; Philiopot, 1994; Chevallier et Champion, 1996; Vallet et al., 1997; Chevallier et Humblot, 1998). Cet allongement de l’intervalle entre vêlages est la conséquence de l’évolution défavorable des taux de non retour mais aussi d’une augmentation du délai entre inséminations successives (Chevallier et Humblot, 1998). Les délais de retour en chaleurs supérieurs à la durée maximale d’un cycle (= 24 jours) peuvent résulter de cas de mortalités embryonnaires tardives (MET) ; dans ce cas l’absence d’œstrus est liée au maintien du corps jaune et de la sécrétion de progêstérone (Humblot et Dalla Porta, 1984). Cependant, de tels délais peuvent être également la conséquence d’œstrus précoces de la gestation (absence de fécondation ou mortalité embryonnaire précoces (NF/MEP)) associées à une nouvelle ovulation dans un délai normal mais non observée par l’éleveur, on parle alors d’œstrus après insémination.

L’objectif de ce travail a été d’analyser, à partir d’un ensemble de troupeaux de faible fertilité et en utilisant les dosages de progêstérone et de protéine spécifique de la gestation (PSPB, Humblot et al., 1988) permettant de distinguer avec précision les différentes causes d’œstrus de gestation, les effets des facteurs génétiques et d’environnement pouvant influencer la fertilité et d’estimer plus particulièrement leur impact sur la répartition des mortalités embryonnaires.

1. MATERIEL ET METHODES

1.1. ANIMAUX, PRÉLEVEMENTS ET DOSAGES
Cette enquête a été réalisée à partir d’un effectif de 1395 vaches laitières Prim’Holstein issues de 44 élevages dans la zone d’activité du Groupe OGER. Les élevages avaient été sélectionnés pour leur faible fertilité sur la base des données de reproduction des deux années antérieures et avaient présenté des taux de fertilité inférieurs à 10 % à ceux de la moyenne des zones concernées. Les événements suivant 2190 inséminations artificielles (IA) ont été étudiés à l’aide des prélèvements suivants. Des échantillons de lait ont été prélévés en vue du dosage de progêstérone (OVUCHEC®, VETOQUINOL, France) le jour de l’IA (J0) et J2 à J24 jours après cette date. Un dosage de PSPB a été réalisé à partir d’un prélèvement de sang 30 à 35 jours après IA. L’état de gestation a été ensuite confirmé par palpation rectale. Les retours en chaleurs ont été enregistrés.

1.2. DÉTERMINATION DES DIFFERENTES SITUATIONS APRÈS INSÉMINATION
Les femelles ayant présenté une concentration de progêstérone > 3,5 ng/ml à J0 et ultérieurement non gestantes ont été considérées comme inséminées à un mauvais moment. Les vaches pour lesquelles les concentrations de progêstérone ont été < 3,5 ng/ml à J0 puis > 5 ng/ml à J21-24, pour lesquelles la PSPB a été détectable non revenues en chaleurs et/ou confirmées gestantes par palpation ont été considérées comme gestantes. Les vaches dont la concentration de progêstérone a été < 5 ng/ml à J21-24 et qui ont été trouvées ultérieurement non gestantes (retour ou palpation) ont été considérées comme non fécondées ou comme des animaux à mortalité embryonnaire précoces (NF/MEP). Enfin les femelles pour lesquelles la concentration de progêstérone a été > 5 ng/ml à J21-24 puis qui ont été trouvées ultérieurement non gestantes (PSPB négative, retour ou palpation) ont été considérées comme des cas de mortalité embryonnaire tardive (MET).

Quelques animaux ont été trouvés non gestants mais pour ceux-ci, à cause de l’absence de certains prélèvements l’attribution à des cas de mortalité embryonnaire précoces (ou d’absence de fécondation) ou tardive n’a pas été possible.

1.3. FACTEURS ENREGISTRÉS :
Pour chaque IA, la date, l’intervalle par rapport au vêlage et le rang ont été notés. Pour chaque vache, la date et les conditions de vêlage, le rang de lactation, le pic de production (maximum des 3 premiers contrôles), le TP (minimum de ces 3 contrôles), l’indice économique laitier (INEL) ainsi que la note d’état (3 classes) ont été enregistrés.

1.4. ANALYSE STATISTIQUE
Les différences entre fréquences des différents cas après insémination suivant le rang d’insémination ont été analysées par le test de Chi 2. L’analyse des effets individuels cités ci-dessus sur la proportion de femelles gestantes en IA1 a été réalisée à l’aide de modèles log-linéaires (SAS 1987, PROC CATMOD). Lorsque des effets de certains facteurs ont été observés sur les taux de gestation en IA1, les effets sur la répartition des cas de mortalité embryonnaire précoces (ou de non fécondation) et de mortalité embryonnaire tardive ont été étudiés plus particulièrement.

2. RESULTATS

2.1. RÉSULTATS GLOBAUX DE FERTILITÉ ET FRÉQUENCE DES SITUATIONS RENCONTRÉES APRÈS IA
La fréquence des vaches gestantes pour les IA de rang 1 a été de 43 % (599/1395). Elle est semblable (Tableau I) pour les rangs d’insémination plus élevés (43,3 %, 348/804). Après les IA de rang 1, les proportions de NF/MEP et de MET ont été respectivement de 31,6 % (441/1395) et de 14,7 % (205/1395). On pourrait penser que ces proportions ont été plus faibles après les IA de rang supérieur (25 % et 9,5 %) mais ceci est du en réalité à une augmentation de la fréquence des femelles chez lesquelles cette distinction des types d’œstrus n’a pas été possible (6,1 %, 85/1395 IA1 vs 15,3 %, 123/804 IA2 et plus) (Tableau I). Globalement (aucun effet du rang d’insémination n’a été observé sur cette répartition), 6,5 % des retours ont été observés avant 17 jours, 37,4 % entre 18 et 24 jours et 56 % à partir de 25 jours.

La fréquence des femelles inséminées avec un taux de progêstérone élevé a été relativement faible et de l’ordre de 4 % (sur un total de 1395 IA1 premières). Cette proportion a été légèrement plus élevée pour les rangs d’IA 2 et plus (6,9 %, 56/804) (Tableau I). Ces vaches ont une distribution des retours très étalée dans le temps alors qu’en principe elles devraient être observées en chaleurs rapidement puisqu’elle n’ont jamais été fécondées.

Tableau I

<table>
<thead>
<tr>
<th>SITUATION APRÈS IA</th>
<th>RANG D'IA</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF/MEP</td>
<td>31,6 %</td>
<td>5,5 %</td>
</tr>
<tr>
<td>MET</td>
<td>14,7 %</td>
<td>29,3 %</td>
</tr>
<tr>
<td>Gestantes (NF/MEP ou MET ?)</td>
<td>6,1 %</td>
<td>12,8 %</td>
</tr>
<tr>
<td>Gestantes (NF/MEP ou MET ?) élevée le jour de l'IA</td>
<td>42,9 %</td>
<td>9,45 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

2.2. SOURCES DE VARIATION DU TAUX DE GESTATION EN IA1 ET DE MORTALITÉ EMBRYONNAIRE
Cette analyse prenant en compte simultanément les différentes sources de variation a été possible à partir d’un effectif de 1374 femelles inséminées pour lesquelles tous les enseignements étaient disponibles. Une augmentation du taux de gestation a été observée avec l’allongement de l’intervalle vêlage-première IA (40,3 % IA1 avant 70 jours (n=518), 42,7 % entre 70 et 90 jours (n=459) et 46,6 % après 90 jours (n=397) ;
p＜0.05). Ceci est lié en partie à une diminution de la fréquence des mortalités embryonnaires tardives pour les IA après 70 jours (17 % avant vs 13 % à partir de 70 jours). Toutefois ces effets du délai de mise à la réroduction sont observés en interaction avec le niveau de production laitière. Chez les fortes productrices (≥39 kg), le taux de fertilité est plus élevé pour les IA réalisées après 90 jours (42 %) alors qu’il est de 35 % et <25 % respectivement chez les femelles inséminées entre 70 et 90 jours avant et après 70 jours. Cet effet n’est pas observé chez des vaches produisant moins de lait (production <39 kg ; interaction significative niveau de production * intervalle vêlage -18 =IA, p<0.05). Chez ces animaux, le taux de gestation est plus stable et >40% quelque soit le moment auquel elles sont inséminées.

Le taux de gestation a diminué (p<0.01) avec l’augmentation du rang de lactation (47,5 % primipares, 42,7 % rang 2 et 3 et 34,6 % rang 4 et plus). Cette baisse de fertilité a été associée à une augmentation des deux types de mortalité embryonnaire. Le taux de gestation a été plus élevé (p<0.001) pour les animaux de classe de TP supérieure (>30) par rapport aux autres femelles (47,1 % vs 41,3 %). Ceci est lié à une diminution des mortalités embryonnaires précoces ou de l’absence de fécondation pour les animaux de cette classe (28,6 % vs 32,8 %) alors que le taux de MET reste inchangé. Le niveau de production laitière a également influencé le taux de gestation en IA (34,9 % ≥39 kg vs 45,5 % pour les classes de production moyenne ou faible, p<0.05). Ceci a été associé essentiellement à une augmentation des MET chez les femelles fortes productrices (18,7 % vs 13,5 % ; p<0,003) avec une interaction forte avec l’état de gestation. Cet effet d’augmentation du taux de vaches non fécondées ou à mortalité embryonnaire précoce (29,1 % vs 37,9 %, p<0,01). Enfin, les effets défavorables d’une augmentation de la production et de l’index laitié sur le taux de gestation en IA ont été additifs. Ce taux a atteint 50 % chez les femelles de production <28,5 kg et d’INEL<5 (n=61) alors qu’il a été seulement de 30 % chez les vaches fortes productrices d’INEL>27 (n=84).

3. DISCUSSION
Ce travail confirme à partir de données plus récentes les informations antérieures portant sur la répartition des échecs de gestation dans les races laitières (Humblot 1986, 1991). L’absence de fécondation et la mortalité embryonnaire précoce représentent les causes d’échec de gestation les plus fréquentes (33 % des IA soit 75 % des échecs enivor). Les mortalités embryonnaires tardives (après 17 jours) expliquent une part plus limitée des échecs (17 % des IA soit 25 % environ). Ce pourcentage d’échecs tardifs apparaît supérieur à celui rapporté précédemment par Humblot (1986, 1991), et par Fournier et Humblot (1989), travaux dans lesquels il était proche de 10 %. Cette augmentation apparente peut être liée aux conditions de cette enquête réalisées dans des troupeaux sélectionnés pour leur faible fertilité au cours de campagnes antérieures. Par ailleurs ce travail a permis de montrer que même dans des troupeaux, la proportion de femelles inséminées avec des concentrations de progesterone élevées était relativement faible (<5 % en IA) et inférieure à celle rapportée précédemment par Rakotonanahary (1977). En revanche ces observations confirment la forte proportion de femelles observées en chaleurs après 25 jours (56 %) dans de tels troupeaux et l’importance de la détection des chaleurs sur la répartition des retours. En outre, cette enquête a permis de révéler l’effet spécifique de certains facteurs sur cette répartition des pertes embryonnaires.

Comme l’étude de Philipot (1994), une augmentation du taux de gestation en 180 IA a été constatée avec l’augmenta-

tion de l’intervalle entre le vêlage et la première IA. L’augmenta-
tion des MET chez les femelles inséminées précocement est cohérente avec les données de Fournier et Humblot (1989).

Dans l’ensemble les informations issues de ces travaux peuvent conduire à nuancer certains messages indiquant la possi-
bilité de remettre à la réproduction les animaux à n’importe quel moment après le vêlage sans effet néfaste sur la fertilité. Les effets défavorables de la diminution de fertilité avec l’âge des femelles ont été décrits de nombreuses fois (Humblot, 1986). On retrouve ici les effets spécifiques de l’augmentation des mortalités embryonnaires tardives avec l’âge mais aussi des effets marqués sur les échanges précoces de gestation (mortalité embryonnaire précoce ou absence de fécondation).

Tableau II

<table>
<thead>
<tr>
<th>EFFET</th>
<th>NF/MEP</th>
<th>MET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index laitié (INEL)</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Production laitière</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>Rang de lactation</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>Note d’état corporel</td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>Classe de VIAI</td>
<td></td>
<td>***</td>
</tr>
</tbody>
</table>

* effet peu marqué ; ** effet marqué ; *** effet très marqué

CONCLUSION

Ce travail a permis de mettre en évidence l’effet spécifique de certains facteurs sur les différents types de mortalité embryonnaire (Tableau II). Il a en particulier les effets génétiques sur les phases précoces du développement (aptitude à la fécondation ou mortalité embryonnaire précoce). D’autres facteurs de risques (au niveau du troupeau) ont été enregistrés et leur importance respective en tant que source de variation du taux de gestation est en cours d’analyse, ainsi que leur effet spécifique sur la répartition des mortalités embryonnaires. Enfin ce travail mérite d’être complété par la prise en compte des per-
formances des groupes de filles de différents pères en tant que source de variation des résultats.

Chevallier, A., Champion, H., 1996. El. et Insem., 272, 8-21
Thibier, M., Rakotonanahary, A., 1977. El. et Insem., 159, 3-10